Exercise 21

The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$?

Solution

Draw a schematic of the triangle at some time.

The area of this triangle is

$$
\begin{equation*}
A=\frac{1}{2} x y . \tag{1}
\end{equation*}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(A) & =\frac{d}{d t}\left(\frac{1}{2} x y\right) \\
\frac{d A}{d t} & =\frac{1}{2}\left(\frac{d x}{d t} y+x \frac{d y}{d t}\right) \\
2 & =\frac{1}{2}\left(\frac{d x}{d t} y+x \cdot 1\right) \\
4 & =\frac{d x}{d t} y+x
\end{aligned}
$$

Solve for $d x / d t$, the rate of change of the base with respect to time.

$$
\frac{d x}{d t}=\frac{4-x}{y}
$$

When the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$, the necessary value of x is found from equation (1).

$$
A=\frac{1}{2} x y \quad \rightarrow \quad x=\frac{2 A}{y}=\frac{2(100)}{10}=20
$$

Therefore, when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$, the rate that the base is changing is

$$
\left.\frac{d x}{d t}\right|_{\substack{x=20 \\ y=10}}=\frac{4-(20)}{(10)}=-1.6 \frac{\mathrm{~cm}}{\min }
$$

